

Q.PEAK DUO XL-G9.3

445-465

ENDURING HIGH PERFORMANCE

www.tuv.com ID 1111232615

BREAKING THE 20% EFFICIENCY BARRIER

Q.ANTUM DUO Z Technology with zero gap cell layout boosts module efficiency up to 21.1%.

THE MOST THOROUGH TESTING PROGRAMME IN THE INDUSTRY

Q CELLS is the first solar module manufacturer to pass the most comprehensive quality programme in the industry: The new "Quality Controlled PV" of the independent certification institute TÜV Rheinland.

LOW ELECTRICITY GENERATION COSTS

Higher yield per surface area, lower BOS costs and up to 30 watts more power per module.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (2400 Pa).

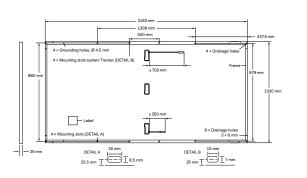

A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty².

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology.

 $^{^{\}rm 2}$ See data sheet on rear for further information.



THE IDEAL SOLUTION FOR:

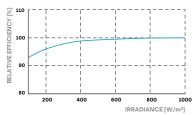
Ground-mounted solar power plants

^{*}Long cables (+) \geq 1450 mm, (-) \geq 1450 mm are available upon request.

ELECTRICAL CHARACTERISTICS

PO	WER CLASS			445	450	455	460	465
MIN	IIMUM PERFORMANCE AT STANDARD	TEST CONDITIO	NS, STC1 (P	OWER TOLERANCE	+5W/-0W)			
Minimum	Power at MPP¹	P _{MPP}	[W]	445	450	455	460	465
	Short Circuit Current ¹	I _{sc}	[A]	10.62	10.65	10.67	10.70	10.73
	Open Circuit Voltage ¹	V _{oc}	[V]	53.15	53.18	53.22	53.25	53.29
	Current at MPP	I _{MPP}	[A]	10.10	10.15	10.20	10.25	10.30
	Voltage at MPP	V _{MPP}	[V]	44.06	44.34	44.61	44.89	45.16
	Efficiency ¹	η	[%]	≥20.0	≥20.2	≥20.4	≥20.6	≥20.9
MIN	MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT ²							
Minimum	Power at MPP	P _{MPP}	[W]	333.2	337.0	340.7	344.5	348.2
	Short Circuit Current	I _{sc}	[A]	8.56	8.58	8.60	8.62	8.64
	Open Circuit Voltage	Voc	[V]	50.12	50.15	50.18	50.22	50.25
	Current at MPP	I _{MPP}	[A]	7.95	7.99	8.03	8.08	8.12
	Voltage at MPP	V _{MPP}	[V]	41.93	42.17	42.41	42.64	42.87

 $^{1}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC}; 1000 \text{W/m}^{2}, 25 \pm 2^{\circ}\text{C}, \text{AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2$


Q CELLS PERFORMANCE WARRANTY

Standard tem of guarantee for the 10 PV companies with the highest production capacity in 2014 (set september 2014)

At least 98% of nominal power during first year. Thereafter max. 0.5% degradation per year. At least 93.5% of nominal power up to 10 years. At least 86% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.35	Nominal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	$V_{\scriptsize SYS}$	[V]	1500	PV module classification	Class II
Maximum Reverse Current	I _R	[A]	20	Fire Rating based on ANSI/UL 61730	C/TYPE1
Max. Design Load, Push/Pull [[Pa]	3600/1600	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/2400	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

Quality Controlled PV - TÜV Rheinland; IEC 61215:2016, IEC 61730:2016. This data sheet complies with DIN EN 50380.

 ϵ

\sim
\wedge
S. 200
. 4

2205mm 1134mm 1200mm 842.5kg

PACKAGING INFORMATION

24 pallets

20 pallets 31 modules

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Vertical

packaging

Hanwha Q CELLS GmbH

Sonnenallee 17-21, 06766 Bitterfeld-Wolfen, Germany | TEL +49 (0)3494 66 99-23444 | FAX +49 (0)3494 66 99-23000 | EMAIL sales@q-cells.com | WEB www.q-cells.com

