

DL Chemical

Photovoltaic Encapsulant Solution

Chemical www.dlchemical.co.kr

Excellent Volume Resistivity

- Test Agency : Korea Polymer Testing & Research Institute, Ltd. (Koptri)
- Test Specimen : 2 mm press sheet
- Test Result : Better volume resistivity compared to EVA and POE \rightarrow Low power loss compared to EVA and POE

Excellent Crosslinking Performance

- Test Condition : Kneading (90°C, 10min), Press (150°C, 15min), MDR (150°C, 20min)
- Reference Recipe : C4 POE + Crosslinking agent 1phr + coagent 0.5phr
- •Test Recipe : DL PK0588 + Crosslinking agent 1phr + coagent 0.5phr
- Test Result : Excellent crosslinking rate → Improvement of PV module productivity compared to other POE

Narrow MWD Material

PK0588 has narrow molecular weight distribution (MWD) and homogeneous comonomer distribution. This results in better crosslinking rate and volume resistivity.

	DL PK0588	C4 POE	Molecular Weight Distribution	Comonomer Distribution
Process	Gas Phase	Solution	DL PK0588	DL PK0588 C4 POE
Catalyst	Metallocene	Metallocene		
Molecular Weight Distribution	Narrow	Broad		
Low Molecular Weight Portion	Low	Reference		
Comonomer	C4	C4		

Well-Balanced Material

1) Excellent Crosslinking Rate

PK0588 shows a better crosslinking rate than counterparts of competitors. \rightarrow Improvement of PV module productivity compared to other POE

2) Excellent Volume Resistivity

PK0588 has an excellent volume resistivity.

→ Increase in PV efficiency by low PID (Potential-Induced Degradation)

3) Good Weatherability / Glass Adhesion / WVTR

PK0588 has good weatherability, glass adhesion, and WVTR characteristics for PV encapsulant.

Properties			Reference (C4 POE)	РК0588
Crosslinkin (Gel Conten	g Rate t)	%	70%	80%
Basic Properties	Transmittance (380~1,100 nm)	%	91	91
	WVTR	g/m² 24h	<5	<5
	Volume Resistivity	Ω·cm	9*10 ¹⁶	2*10 ¹⁷
Glass Adhesion		gf	>200	>200
Weatherability (85℃ / 85%Rh / 40days)		∆YI	<3	<3

Low CO₂ Emission

PK0588 is produced by Gas Phase Reactor Process without solvent and then has low CO₂ emission by reducing energy intensity. It is the best product for carbon neutrality.

	Process (Feed)		PK0588 Gas Phase (C2-,1-Butene)	A Company Solution (C2-,1-Octene)
Basic	Electricity	KW/MT	674	355
unit Stea	Steam	MT/MT	0.19	2.2
CO ₂ e	emission ²⁾	ton-CO ₂ /MT	0.343	0.544
Residual	Hydrocarbon	ppm	14	34

1) Source : SRI and Nexant Technical Report

2) CO2 Conversion Factor: Electricity 0.0004594 tCO2-eq/kw, LP/MP Steam 0.1736 tCO2-eq/MT, HP Steam 0.1874 tCO2-eq/MT

No Caking Problem

PK0588 has higher density and less low molecular weight portion compared to other POE.

There is no caking problem caused by sticking of raw materials during transit or storage.

It is stored in open space by loading it in two layers in a container for **72 days**. (Outside temperature : 20~35°C)

Disassembly of bottom loaded bag. PK0588 exists in pellet form without caking

PK0588 Photovoltaic Encapsulant TDS

Description			
Characteristics	Excellent Crosslinking RateExcellent Volume Resistivity	Good Weatherability and Glass AdhesionGood Transmittance and WVTR	
Application	 Photovoltaic Module Encapsulant 		
Specification	• FDA 21 CFR 177.1520		

Properties			
Basic Properties	Unit	Test Method	PK0588
Density	g/cm³	ASTM D1505	0.885
Melt Index (190°C, 2.16kg)	g/10min	ASTM D1238	5.0
Vicat Softening Temperature	°C	ASTM D1525	52
Molecular Weight (M _W)	g/mol	DL Method	82,000
Melting Temperature	°C	ASTM D3418	63
Glass Transition Temperature	°C	DL Method	- 44
Additives ¹⁾	-	_	AO
Sheet ²⁾ Properties	Unit	Test Method	PK0588
Tensile Strength at Break	MPa	ASTM D638	15
Elongation at Break	%	ASTM D638	>1,000
Flexural Modulus	MPa	ASTM D790	31
Hardness (Shore A)	-	ASTM D2240	76

1) Additives : AO (Antioxidant) 2) Compression Molding Sheet data

These are typical properties only and are not to be construed as specifications.