

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-NE-P-250W

Solar Innova uses the latest materials to manufacture photovoltaic modules. Our modules are ideal for any application that uses the photoelectric effect as a clean energy source because of its minimal chemical pollution and no noise pollution.

The front of the module contains a tempered solar glass with high transmissivity, low reflectivity and low iron content.

These PV modules use high-efficiency polycrystalline silicon cells (the cells are made of several crystals of high purity silicon) to transform the energy of sunlight into electric energy. Each cell is electrically rated to optimize the behavior of the module.

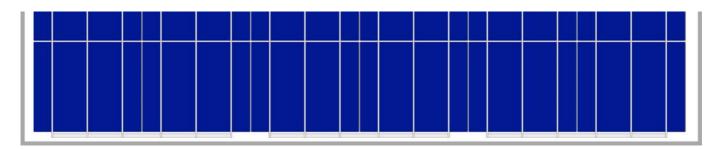
The cell circuit is laminated using EVA (Ethylene-Vinyl Acetate) as a encapsulant in combination with a tempered glass on its front and a plastic polymer (Tedlar) on the back which provides complete protection and seals against environmental agents and electrical insulation.

Its performance is excellent over the entire range of light spectrum, with particularly high yields in low light situations or cloudiness to direct sunlight (diffuse radiation).

The compact, anodized aluminum frame provides an optimal relationship-weight moment of inertia, to obtain greater rigidity and resistance to twisting and bending. It has several holes to attach the module to the support structure and ground if necessary.

The junction boxes with IP65, are made from high temperature resistant plastics and containing terminals, connection terminals and protection diodes (by-pass). These modules are supplied with symmetric lengths of cable, with a diameter of copper section of 4 mm and an extremely low contact resistance, all designed to achieve the minimum voltage drop losses.

Our modules comply with all safety requirements not only flexibility but also double insulation and high resistance to UV rays, all are suitable for use in outdoor applications. The design of these modules makes their integration in both industrial and residential buildings (one of the most emerging sectors in the photovoltaic market), and other infrastructure, simple and aesthetic.


WARRANTIES

Our manufacturing plants have been prepared in accordance with the ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007.

We have quality control divided into three elements:

- \checkmark Regular inspections allow us to guarantee the quality of the raw material.
- \checkmark Quality control in the process of our manufacturing procedures.
- \checkmark Quality control of finished products, we conduct through inspections and tests of reliability and performance.

Our PV modules are certified by internationally recognized laboratories and are proof of our strict adherence to international safety standards, long term performance and overall quality of products.

SOLAR INNOVA GREEN TECHNOLOGY, S.L. N.I.F.: ESB-54.627.278 Paseo de los Molinos, 12, Bajo 03660 - NOVELDA (Alicante) SPAIN Tel./Fax: +34 965075767 E-mail: info@solarinnova.net Website: www.solarinnova.net

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-NE-P-250W

ELECTRICAL CHARACTERISTICS				
Maximum power (Pmpp)	Wp	250		
Tolerance	Wp	0 ~ + 5		
Voltage at maximum power (Vmpp)	Volts	36.2		
Current at maximum power (Impp)	Amperes	6.91		
Open circuit voltage (Voc)	Volts	44.6		
Short circuit current (Isc)	Amperes	7.32		
Maximum system voltage (Vsyst)	Volts	600 (UL) / 1,000 (IEC)		
Diodes (By-pass)	Quantity	2		
Maximum series fuse	Amperes	15		
Efficiency (ηm)	%	15.37		
Form Factor	%	≥ 73		
STC: Irradiance: 1.000 W/m ²	e temperature: 25º C	Air quality: 1,5		

ELECTRICAL CHARACTERISTICS (NOCT)					
Maximum power (Pmpp) Wp 184					
Voltage at maximum power (Vmpp)	Volts	32.96			
Current at maximum power (Impp)	Amperes	5.61			
Open circuit voltage (Voc)	Volts	40.76			
Short circuit current (Isc)	Amperes	5.94			

NOCT:	Irradiance: 800 W/m ²	Į	Air temperature: 20º C	Air quality: 1,5	ျို	Wind speed: 1 m/s

MECHANICAL CHARACTERISTICS						
Size	Height	1,640 mm	64.56 inches			
	Width	992 mm	39.05 inches			
	Thickness	35 mm	1.38 inches			
Weight	Net	20 kg	44.09 lbs			
Structure	Material	Anodized aluminum	n AL6063-T5, minim 15 μm			
Front	Material	High transmissivity	toughened glass			
	Thickness	3.2 ± 0.2 mm	0.13 inches			
Cells	Туре	Polycrystalline				
	Quantity	6 x 12 units				
	Size	156 x 143 mm	6 x 5.62 inches			
Serial connection	Quantity	72 units				
Parallel connection	Quantity	1 unit				
Encapsulation	Material	EVA				
	Thickness	0.50 ± 0.03 mm	0.020 ± 0.0012 inches			
Back-Sheet	Material	ТРТ				
	Thickness	0.32 ± 0.03 mm	0.013 ± 0.0012 inches			
Junction box	Material	PVC				
	Protection	IP67				
	Isolation	Versus humidity and inclement weather				
Cables	Туре	Polarized and symn	netric in length			
	Length	900 mm	35.4 inches			
	Thickness	4 mm ²	0.006 inches ²			
	Features	Low contact resistance				
	Features	Minimal losses for voltage drop				
Connectors	Material	PVC				
	Туре	MC4				
	Protection	IP67				

THERMAL CHARACTERISTICS					
Temperature coefficient of short circuit current a (Icc)	%/º C	+ 0.0825			
Temperature coefficient of open circuit voltage β (Voc)	%/º C	- 0.4049			
Temperature coefficient of maximum power γ (Pmpp)	%/º C	- 0.4336			
Temperature coefficient of current at maximum power (Impp)	%/º C	+ 0.10			
Temperature coefficient of voltage at maximum power (Vmpp)	%/° C	- 0.38			
NOCT (Nominal Operating Cell Temperature)	° C	+ 47 ± 2			

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-NE-P-250W

TOLERANCES					
Working temperature	° C	٩F	- 40 ~ + 85	- 40 ~ + 185	
Dielectric Isolation Voltage	Vc	olts	3.000		
Relative humidity	0	6	0 ~ 100		
Wind resistance	m/s 60		60)	
	kg/m ²	Pa	245	2,400	
	lbs/feet ² 491.56				
Mechanical load-bearing capacity	kg/m ²	Pa	551	5,400 (IEC)	
	lbs/feet ²	Pa	75.2	3,600 (UL)	
Fire resistance	Cla	ase	С		

MEASUREMENTS PERFORMED IN ACCORDANCE WITH STANDARD TEST METHODS EN 60904-3 AND ASTM E1036, CORRECTED TO STANDARD TEST CONDITIONS (STC)					
Air quality/Spectral distribution AM 1.5 ASTM G173-03e1 (2,008)					
Luminous intensity/Radiation W/m ² 1,000					
Cell temperature	° C	25			

MEASUREMENTS PERFORMED IN SOLAR SIMULATOR					
Class AAA (according to IEC 60904-4)					
Power measurement uncertainty is within ± 3 %					

STRUCTURAL CHARACTERISTICS			
Cells	High efficiency cells with anti-reflective layer of Silicon Nitride.		
Electric conductors	Flat Copper (Cu) bath in a Tin (Sn) and Silver (Ag) alloy, which improves weldability.		
Welding	Of cells and drivers in sections for stress relief.		
Laminate	Composed of ultra-clear tempered glass on the front, thermostable, EVA encapsulant embedding cells and electrical insulation on the rear formed by a tedlar and polyester compound.		
Junction box	Hoses and quick connectors with anti-error. Include bypass diodes, interchangeables thanks to the wiring system has no welds, all electrical contacts are made by pressure, thus avoiding the possibility of cold welding.		

CHARACTERISTICS OF WORK

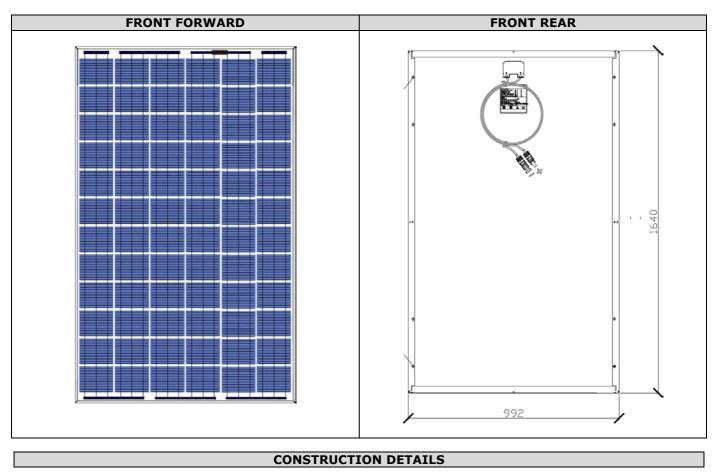
- The power of solar cells vary in the output of the production process. The different power specifications of these modules reflect this dispersion.

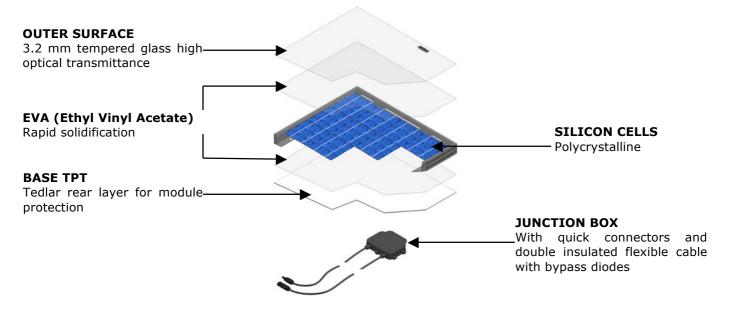
- Cells during the early months of light exposure, may experience a degradation photonics could decrease the value of the maximum power of the module up to 3 %.

- The cells, in normal, operating conditions, reach a temperature above the standard measurement conditions of the laboratory. The NOCT is a quantitative measure of the increase. NOCT measurement is performed under the following conditions: radiation of 0.8 kW/m^2 , temperature 20° C and wind speed of 1 m/s.

- The electrical data reflects typical values of the modules and laminates as measured at the output terminals at the end of the manufacturing process.

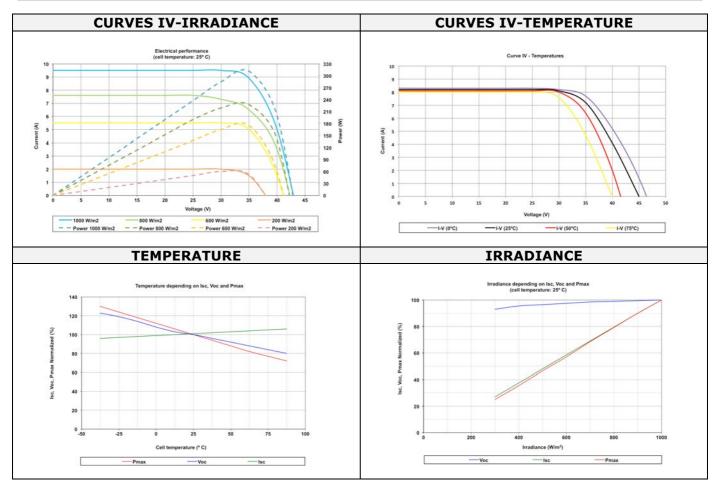
WARRANTIES					
Manufacturing defects Years 12					
Doufour on on	Minimal Rated Power	90 % at 10 years,			
Performance	%/Years	80 % at 25 years.			


CERTIFICATES					
ISO	CE				



SOLAR INNOVA GREEN TECHNOLOGY, S.L. N.I.F.: ESB-54.627.278 Paseo de los Molinos, 12, Bajo 03660 - NOVELDA (Alicante) SPAIN Tel./Fax: +34 965075767 E-mail: info@solarinnova.net Website: www.solarinnova.net

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-NE-P-250W



SOLAR INNOVA GREEN TECHNOLOGY, S.L. N.I.F.: ESB-54.627.278 Paseo de los Molinos, 12, Bajo 03660 - NOVELDA (Alicante) SPAIN Tel./Fax: +34 965075767 E-mail: info@solarinnova.net Website: www.solarinnova.net

PHOTOVOLTAIC SOLAR ENERGY POLYCRYSTALLINE MODULES - SI-ESF-M-NE-P-250W

PERFORMANCE

